Nouveau moniteur de faisceau transparent basé sur l'émission d'électrons secondaires pour faisceaux de particules chargées en hadronthérapie

C. Thiebaux¹, G. Blain², B. Boyer¹, E. Delagnes³, Y. Geerebaert¹, O. Gevin³, F. Haddad^{2,4}, C.Koumeir⁴, F. Magniette¹, P. Manigot¹, N. Michel², F. Poirier⁴, N. Servagent², T. Sounalet², M. Verderi¹

¹Laboratoire Leprince-Ringuet CNRS-Ecole polytechnique/Palaiseau/France, ²Laboratoire SUBATECH, IMT Atlantique CNRS-Université de Nantes/Nantes/France, ³IRFU, CEA Université Paris-Saclay/Saclay/France, ⁴GIP ARRONAX/Saint-Herblain/France

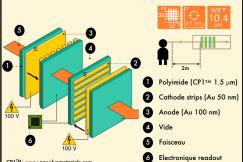
Contexte

L'administration de doses en hadronthérapie nécessite une mesure continue et précise des propriétés du faisceau, intensité, position et profil, ceci avec une perturbation minimale. Le projet PEPITES vise à développer un nouveau profileur ultra-mince offrant une bonne résistance aux radiations et fonctionnant dans le vide de la ligne de faisceau

Buts

- Surveillance continue du faisceau pendant le traitement du patient
- Utilisation simple et longue durée de vie du détecteur

Challenges



- Perturbation minimale du faisceau
 - Budget matière < 15 μm WET

- Monitoring continu
- Bonne radioresistance (jusqu'à 108 Gy/year)

Schéma du détecteur

Résultats

ARRONAX Validation 68 MeV protons 100 fA - 10 nA

Irradiations avec electrons, protons, gamma sources pas de dommages critiques jusqu'à 109 Gy APPROVED

Mesure SEE

ARRONAX protons (30-68 MeV) et alphas

CPO protons (100-230 MeV)

Solution

- Secondary Electron Emission (SEE) pour signal - Phénomène de surface
- Zone sensible
 - strips d'or de 50 nm
 - déposés sur une membrane polymère de 1.5 μm
- Construit avec des techniques de couches minces
 - Conception modulaire
 - Adaptation aux spécificités du faisceau
- Fonctionne dans le vide
 - Pas de contraintes mécaniques

Prototype

- Preuve de concept - ARRONAXª
- Etudes SEE
 - ARRONAX CPO^b
- Tenue aux radiations - LSIc

 - CSNSM^d
 - ARRONAX

www.cyclotron-nantes.fr bOrsay Protontherapy Center Cportail.polytechnique.edu/lsi/fr

Strips (Au, 50 nm) déposés sur 1.5 µm de CP1™

Chip de lecture électronique

"Maturation" pour PT

PEPITES est financé par l'Agence Nationale de la Recherche, ANR-17-CE31-0015, ANR-11-EQPX-0004 et le LABEX P210

